
1. Introduction

Augmented reality (AR) and mixed reality (MR) are being used in urban leader tactical
response, awareness and visualization applications (Livingston et al., 2006; Urban Leader
Tactical Response, Awareness & Visualization (ULTRA-Vis), n.d.). Fixed-position surveillance
cameras, mobile cameras, and other image sensors are widely used in security monitoring
and command and control for special operations. Video images from video see-through AR
display and optical tracking devices may also be fed to command and control centers. The
ability to let the command and control center have a view of what is happening on the ground
in real time is very important for situation awareness. Decisions need to be made quickly
based on a large amount of information from multiple image sensors from different locations
and angles. Usually video streams are displayed on separate screens. Each image is a 2D
projection of the 3D world from a particular position at a particular angle with a certain field
of view. The users must understand the relationship among the images, and recreate a 3D
scene in their minds. It is a frustrating process, especially when it is a unfamiliar area, as may
be the case for tactical operations.

AR is, in general, a first-person experience. It is the combination of real world and
computer-generated data from the user’s perspective. For instance, an AR user might wear
translucent goggles; through these, he can see the real world as well as computer-generated
images projected on top of that world (Azuma, 1997). In some AR applications, such as the
battle field situation awareness AR application and other mobile outdoor AR applications
(Höllerer et al., 1999; Piekarski & Thomas, 2003), it is useful to let a command and control
center monitor the situation from a third-person perspective.

Our objective is to integrate geometric information, georegistered image information, and
other georeferenced information into one mixed environment that reveals the geometric
relationship among them. The system can be used for security monitoring, or by a command
and control center to direct a field operation in an area where multiple operators are engaging
in a collaborative mission, such as a SWAT team operation, border patrol, security monitoring,
etc. It can also be used for large area intelligence gathering or global monitoring. For outdoor
MR applications, geographic information systems (GIS) or virtual globe systems can be used
as platforms for such a purpose.
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2. Related work

On the reality-virtuality continuum (Milgram et al., 1995), our work is close to augmented
virtuality, where the real world images are dynamically integrated into the virtual world in
real time (Milgram&Kishino, 1994). This project works together closely with our AR situation
awareness application, so it will be referred as a MR based application in this paper.

Although projecting real time images on top of 3D models has been widely practiced
(Hagbi et al., 2008), and there are some attempts on augmenting live video streams for
remote participation (Wittkämper et al., 2007) and remote videoconferencing (Regenbrecht
et al., 2003), no work on integrating georegistered information on a virtual globe for MR
applications has been found.

Google Earth has been explored for AR/MR related applications to give “remote viewing”
of geo-spatial information (Fröhlich et al., 2006) and urban planning (Phan & Choo, 2010).
Keyhole Markup Language (KML) files used in Google Earth have been used for defining the
augmented object and its placement (Honkamaa, 2007). Different interaction techniques are
designed and evaluated for navigating Google Earth (Dubois et al., 2007).

The benefit of the third-person perspective in AR was discussed in (Salamin et al., 2006).
They found that the third-person perspective is usually preferred for displacement actions
and interaction with moving objects. It is mainly due to the larger field of view provided by
the position of the camera for this perspective. We believe that our AR applications can also
benefit from their findings.

There are some studies of AR from the third-person view in gaming. To avoid the use of
expensive, delicate head-mounted displays, a dice game in a third-person AR was developed
(Colvin et al., 2003). The user-tests found that players have no problem adapting to the
third-person screen. The third-person view was also used as an interactive tool in a mobile
AR application to allow users to view the contents from points of view that would normally
be difficult or impossible to achieve (Bane & Hollerer, 2004).

AR technology has been used together with GIS and virtual globe systems (Hugues et al.,
2011). A GIS system has been used to work with AR techniques to visualize landscape
(Ghadirian & Bishop, 2008). A handheld AR system has been developed for underground
infrastructure visualization (Schall et al., 2009). Amobile phone AR system tried to get content
from Google Earth (Henrysson & Andel, 2007).

The novelty of our approach lies in overlaying georegistered information, such as real time
images, icons, and 3D models, on top of Google Earth. This not only allows a viewer to view
it from the camera’s position, but also a third person perspective. When information from
multiple sources are integrated, it provides a useful tool for command and control centers.

3. Methods

Our approach is to partially recreate and update the live 3D scene of the area of interest
by integrating information with spatial georegistration and time registration from different
sources on a virtual globe in real time that can be viewed from any perspective. This
information includes video images (fixed or mobile surveillance cameras, traffic control
cameras, and other video cameras that are accessible on the network), photos from high
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altitude sensors (satellite and unmanned aerial vehicle), tracked objects (personal and vehicle
agents and tracked targets), and 3D models of the monitored area.

GIS or virtual globe systems are used as platforms for such a purpose. The freely available
virtual globe application, Google Earth, is very suitable for such an application, and was used
in our preliminary study to demonstrate the concept.

The target application for this study is an AR situation awareness application for military
or public security uses such as battlefield situation awareness or security monitoring.
An AR application that allows multiple users wearing a backpack-based AR system or
viewing a vehicle mounted AR system to perform different tasks collaboratively has been
developed(Livingston et al., 2006). Fixed position surveillance cameras are also included in
the system. In these collaborative missions each user’s client sends his/her own location to
other users as well as to the command and control center. In addition to the position of the
users, networked cameras on each user’s system can stream videos back to the command and
control center.

The ability to let the command and control center have a view of what is happening on the
ground in real time is very important. This is usually done by overlaying the position markers
on amap and displaying videos on separate screens. In this study positionmarkers and videos
are integrated in one view. This can be done within the AR application, but freely available
virtual globe applications, such as Google Earth, are also very suitable for such a need if live
AR information can be overlaid on the globe. It also has the advantage of having satellite
or aerial photos available at any time. When the avatars and video images are projected on
a virtual globe, it will give command and control operators a detailed view not only of the
geometric structure but also the live image of what is happening.

3.1 Georegistration

In order to integrate the video images on the virtual globe, they first need to be georegistered
so that they can be projected at the right place. The position, orientation, and field of view of
all the image sensors are needed.

For mobile cameras, such as vehicle mounted or head mounted cameras, the position and
orientation of the camera are tracked by GPS and inertial devices. For a fixed-position
surveillance camera, the position is fixed and can be surveyed with a surveying tool. A
calibration process was developed to correct the errors.

The field of view and orientation of the cameras may be determined (up to a scale factor) by
a variety of camera calibration methods from the literature (Hartley & Zisserman, 2004). For
a pan-tilt-zoom camera, all the needed parameters are determined from the readings of the
camera after initial calibration. The calibration of the orientation and the field of view is done
manually by overlaying the video image on the aerial photo images on Google Earth.

3.2 Projection

In general there are two kind of georegistered objects that need to be displayed on the virtual
globe. One is objects with 3D position information, such as icons representing the position of
users or objects. The other is 2D image information.

5Mixed Reality on a Virtual Globe
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To overlay iconic georegistered information on Google Earth is relatively simple. The AR
system distributes each user’s location to all other users. This information is converted from
the local coordinate system to the globe longitude, latitude, and elevation. Then an icon can
be placed on Google Earth at this location. This icon can be updated at a predefined interval,
so that the movement of all the objects can be displayed.

Overlaying the 2D live video images on the virtual globe is complex. The images need to
be projected on the ground, as well as on all the other objects, such as buildings. From a
strict viewpoint these projections couldn’t be performed if not all of the 3D information were
known along the projection paths. However, it is accurate enough in practice to just project the
images on the ground and the large objects such as buildings. Many studies have been done
to create urban models based on image sequences (Beardsley et al., 1996; Jurisch & Mountain,
2008; Tanikawa et al., 2002). It is a non-trivial task to obtain these attributes in the general case
of an arbitrary location in the world. Automated systems (Pollefeys, 2005; Teller, 1999) are
active research topics, and semi-automated methods have been demonstrated at both large
and small scales (Julier et al., 2001; Lee et al., 2002; Piekarski & Thomas, 2003). Since it is
difficult to recreate 3D models in real time with few images, the images on known 3D models
are projected instead at least in the early stages of the study.

To display the images on Google Earth correctly, the projected texture maps on the ground
and the buildings are created. This requires the projected images and location and orientation
of the texture maps. An OpenSceneGraph (OpenSceneGraph, n.d.) based rendering program is
used to create the texture maps in the frame-buffer. This is done by treating the video image
as a rectangle with texture. The rectangle’s position and orientation are calculated from the
camera’s position and orientation. When viewing from the camera position and using proper
viewing and projection transformations, the needed texture maps can be created by rendering
the scene to the frame-buffer.

The projection planes are the ground plane and the buildingwalls. This geometric information
comes from a database created for the target zone. Although Google Earth has 3D buildings
in many areas, including our target zone, this information is not available for Google Earth
users and thus cannot be used for our calculations. Besides, the accuracy of Google Earth 3D
buildings various from places to places. Our measurements show that our database is much
more accurate in this area.

To create the texture map of the wall, an asymmetric perspective viewing volume is needed.
The viewing direction is perpendicular to the wall so when the video image is projected on the
wall, the texture map can be created. The viewing volume is a frustum of a pyramid which is
formed with the camera position as the apex, and the wall (a rectangle) as the base.

When projecting on the ground, the area of interest is first divided into grids of proper size.
When each rectangular region of the grid is used instead of the wall, the same projection
method for the wall described above can be used to render the texturemap in the frame-buffer.

The position and size of the rectangular region are changing when the camera moves or
rotates. the resolution of the texture map is kept roughly the same as the video image
regardless of the size of the region, so that the details of the video image can be maintained
while the memory requirement is kept at a minimum. To calculate the region of the projection
on the ground, a transformation matrix is needed to project the corners of the video image to
the ground:
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M = P× T × R

where R and T are the rotation and translation matrices that transform the camera to the right
position and orientation, and P is the projection matrix, which is

P =

⎡
⎢⎢⎣

d 0 0 0
0 d 0 0
0 0 −d 0
0 0 1 0

⎤
⎥⎥⎦

where d is the distance between the camera and the projection plane (the ground).

While the camera is moving, it is possible to keep the previous textures and only update the
parts where new images are available. In this way, a large region will be eventually updated
when the camera pans over the area.

The zooming factor of the video camera can be converted to the field of view. Together with
the position and orientation of the camera that are tracked by GPS, inertial devices, and
pan-tilt readings from the camera, we can calculate where to put the video images. The
position and size of the image can be arbitrary as long as it is along the camera viewing
direction, with the right orientation and a proportional size.

3.3 Rendering

The rendering of the texture is done with our AR/MR rendering engine which is based on
OpenSceneGraph. A two-pass rendering process is performed to remove part of the views
blocked by the buildings.

In the first pass, all of the 3D objects in our database are disabled and only the camera image
rectangle is in the scene. The rendered image is grabbed from the frame-buffer. Thus a
projected image of the video is obtained. In the second pass the camera image rectangle is
removed from the scene. The grabbed image in the first pass is used as a texture map and
applied on the projection plane (the ground or the walls). All the 3D objects in the database
(mainly buildings) are rendered as solid surfaces with a predefined color so that the part on the
projection plane that is blocked is covered. The resulting image is read from the frame-buffer
and used as texture map in Google Earth. A post-processing stage changes the blocked area
to transparent so that the satellite/aerial photos on Google Earth are still visible.

3.4 Google Earth interface

Google Earth uses KML to overlay placemarks, images, etc. on the virtual globe. 3D models
can be built in Collada format and displayed on Google Earth. A Google Earth interface
module for ourMR system has been developed. This module is an hyper-text transfer protocol
(HTTP) server that sends icons and image data to Google Earth. A small KML file is loaded
into Google Earth that sends update requests to the server at a certain interval, and updates
the received icons and images on Google Earth.

7Mixed Reality on a Virtual Globe
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4. Results

An information integration prototype module with the Battlefield Augmented Reality System
(BARS) (Livingston et al., 2004) has been implemented. This module is an HTTP server
implemented in C++ that sends icons and image data to Google Earth. The methods are
tested in a typical urban environment. One user roams the area while another object is a
fixed pan-tilt-zoom network surveillance camera (AXIS 213 PTZ Network Camera) mounted
on top of the roof on a building by a parking lot. This simulates a forward observation post
in military applications or surveillance camera in security applications. The command and
control center is located at a remote location running the MR application and Google Earth.
Both the server module and Google Earth are running on a Windows XP machine with dual
3.06 GHz Intel Xeon CPU, 2 GB RAM, and a NVIDIA Quadro4 900XGL graphics card.

Fig. 1. Video image of the parking lot and part of a building from a surveillance video
camera on the roof top.

The testing area is a parking lot and some buildings nearby. Figure 1 is the video image from
the roof top pan-tilt-zoom camera when it is pointing to the parking lot. One of the parking
lot corners with a building is in the camera view. Another AR user is on the ground of the
parking lot, the image captured by this user in shown in Figure 2 which shows part of the
building.

Google Earth can display 3D buildings in this area. When the 3D building feature in Google
Earth is enabled, the final result is shown in Figure 4. The images are projected on the
buildings as well as on the ground and overlaid on Google Earth, together with the icon of an
AR user (right in the image) and the icon representing the camera on the roof of the building
(far left in the image). The parking lot part is projected on the ground and the building part

8 Augmented Reality – Some Emerging Application Areas
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Fig. 2. Image from a AR user on the ground.

Fig. 3. Image of the target zone on Google Earth.

9Mixed Reality on a Virtual Globe
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Fig. 4. Recreated 3D scene viewed with 3D buildings on Google Earth. The two field
operator’s icons and the video image are overlaid on Google Earth.

(the windows, the door, and part of the walls) is projected on vertical polygons representing
the walls of the building. The model of the building is from the database used in our AR/MR
system. When the texture was created, the part that is not covered by the video image is
transparent so it blended into the aerial image well. The part of the view blocked by the
building is removed from the projected image on the ground.

Google Earth supports 3D interaction; the user can navigate in 3D. This gives the user the
ability to move the viewpoint to any position. Figure 4 is from Google Earth viewed from an
angle instead of looking straight down. This third-person view is very suitable in command
and control applications. The projected images are updated at a 0.5 second interval, so viewers
can see what is happening live on the ground. It needs to point out that the 3D building
information in Google Earth is not very accurate in this area (especially the height of the
buildings), but is a good reference for our study.

The result shows the value of this study which integrates information from multiple sources
into one mixed environment. From the source images (Figure 1 and Figure 2), it is difficult to
see how they are related. By integrating images, icons, and 3D model as shown in Figure 4,
it is very easy for the command and control center to monitor what is happening live on the
ground. In this particular position, the AR user on the ground and the simulated forward

10 Augmented Reality – Some Emerging Application Areas



Mixed Reality on a Virtual Globe 9

observation post on the roof top can not see each other. The method can be integrated into
our existing AR applications so that each on-site user will be able to see live images from
other users’ video cameras or fixed surveillance cameras. This will extend the X-ray viewing
feature of AR systems by adding information not only from computer generated graphics but
also live images from other users in the field.

5. Discussion

The projection errors on the building in Figure 4 are pretty obvious. There are several sources
of errors involved. One is the accuracy of the models of the buildings. More serious problems
come from camera tracking, calibration, and lens distortion. The lens distortion are not
calibrated in this study due to limited time, which is probably one of the major causes of
error. This will be done in the near future.

Camera position, orientation, and field of view calibration is another issue. In our study,
the roof top camera position is fixed and surveyed with a surveying tool, it is assumed that
it is accurate enough and is not considered in the calibration. The orientation and field of
view were calibrated by overlaying the video image on the aerial photo images on Google
Earth. The moving AR user on the ground is tracked by GPS and inertial devices which can
be inaccurate. However in a feature-based tracking system such as simultaneous localization
and mapping (SLAM) (Durrant-Whyte & Bailey, 2006), the video sensors can be used to feed
Google Earth and accuracy should be pretty good as long as the tracking feature is working.

The prerequisite of projecting the images on the wall or other 3D objects is that a database
of the models of all the objects is created so that the projection planes can be determined.
The availability of the models of such big fixed objects like buildings are in general not a
problem. However there is no single method exist that can reliably and accurately create all
the models. Moving objects such as cars or persons will cause blocked parts that can not be
removed using the methods that are used in this study. Research has been done to detect
moving objects based on video images (Carmona et al., 2008). While in theory it is possible to
project the video image on these moving objects, it is not really necessary in our applications.

Google Earth has 3D buildings in many areas; this information may be available for Google
Earth users and thus could be used for the calculations. The accuracy of Google Earth 3D
buildings varies from place to place; a more accurate model may be needed to get desired
results. Techniques as simple as manual surveying or as complex as reconstruction from
Light Detection and Ranging (LIDAR) sensing may be used to generate such a model. Many
studies have been done to create urban models based on image sequences (Beardsley et al.,
1996; Jurisch & Mountain, 2008; Tanikawa et al., 2002). It is a non-trivial task to obtain these
attributes in the general case of an arbitrary location in the world. Automated systems are an
active research topic (Pollefeys, 2005; Teller, 1999), and semi-automated methods have been
demonstrated at both large and small scales (Julier et al., 2001).

6. Future work

This is a preliminary implementation of the concept. Continuing this on-going effort, the
method will be improved in a few aspects. This includes registration improvement between
our exiting models and the Google Earth images as well as the calibration issues noted above.
The zooming feature of the camera has not been used yet, which will require establishing

11Mixed Reality on a Virtual Globe
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a relation between the zooming factor and the field of view, another aspect of camera
calibration. Other future work includes user studies related to effectiveness and efficiency
of the system in terms of collaboration.

Currently when the texture map is updated, the old texture is discarded, it is possible to keep
the previous textures and only update the parts where new images are available. In this way,
a large region will be eventually updated when the camera pans over a larger area.

There are a few aspects contributing to the error of the system that should be addressed in the
future. This will be done in the near future.

7. Conclusion

In this preliminary study, the methods of integrating georegistered information on a virtual
globe is investigated. The application can be used for a command and control center to
monitor the field operation where multiple AR users are engaging in a collaborative mission.
Google Earth is used to demonstrate the methods. The system integrates georegistered icons,
live video streams from field operators or surveillance cameras, 3D models, and satellite or
aerial photos into one MR environment. The study shows how the projection of images is
calibrated and properly projected onto an approximate world model in real time.
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